npj Climate and Atmospheric Science (Nov 2024)
Mortality burden of diabetes attributable to high temperature and heatwave under climate change scenarios in China
Abstract
Abstract Climate change and diabetes pose the dual challenges to human health, yet there is a lack of evidence regarding future health burden of diabetes attributable to climate change. In this study, we used three-stage analytic strategy to project the heat-related and heatwave-related diabetes deaths by demographic characteristics and regions, during 2010–2100 in 32 major Chinese cities. Under SSP5-8.5 (high carbon emission scenario), heat-related attributable fraction of diabetes mortality is projected to rise from 2.3% (95% empirical confidence interval [eCI]: 1.1%, 3.6%) in the 2010s to 19.2% (95% eCI: 10.2%, 32.5%) in the 2090s, and estimated heatwave-related attributable fractions will increase from 0.8% (95% eCI: 0.6%, 1.0%) in the 2010s to 9.3% (95% eCI: 6.7%, 11.8%) in the 2090s. We projected that the number of heat- and heatwave-related diabetes deaths would increase from 1525 (95% eCI: 759, 2431) and 529 (95% eCI: 382, 668) in the 2010s, to 12,956 (95% eCI: 6861, 21,937) and 6312 (95% eCI: 4557, 7972) in the 2090s, respectively. Under SSP1-2.6, SSP2-4.5, and SSP3-7.0 (lower carbon emissions), we projected much lower future heat- and heatwave-related diabetes mortality burdens. Our findings might provide new insights for the development of protecting patients with diabetes from increasing temperature.