Electrochemistry Communications (Sep 2024)

Electrochemical behavior of deoxidation titanium scrap process by induced overpotential molten salt electrolyte

  • Namhun Kwon,
  • Hyunchul Kim,
  • Ui Jun Ko,
  • Soong Ju Oh,
  • Mi Hye Lee,
  • Jae Hong Shin,
  • Kyoung-Tae Park

Journal volume & issue
Vol. 166
p. 107780

Abstract

Read online

This study investigates the deoxidation process of low-grade titanium scrap through molten salt electrolysis induced by overpotential. The research focuses on understanding the efficiency and mechanisms involved in the deoxidation of titanium scrap, utilizing induced overpotential as a key parameter. The analysis includes a detailed examination of the molten salt deoxidation process, with emphasis on electrochemical reactions and overall performance. The findings contribute valuable insights into the application of induced overpotential in enhancing the deoxidation of low-grade titanium scrap through molten salt electrolysis. This research contributes to the optimization of titanium recycling processes, with potential implications for sustainable and resource-efficient metallurgical practices. The induction of overvoltage phenomena was intentionally introduced to achieve an oxygen separation efficiency beyond thermodynamic limits. Furthermore, the correlation between electrochemical factors, formation electrode potential, and oxygen removal efficiency was elucidated. The initial titanium scraps, characterized by an oxygen concentration of 5500 ppm and a purity of 98.2 %, underwent a significant enhancement in characteristics, reaching 1850 ppm of oxygen concentration and 98.97 % purity after the first electrolysis process. In summary, this study presents a comprehensive approach to the separation and purification of titanium from low-grade scraps, by molten salt electrolysis.

Keywords