BMC Urology (Apr 2022)

Multiparametric transrectal ultrasound for the diagnosis of peripheral zone prostate cancer and clinically significant prostate cancer: novel scoring systems

  • Tong Chen,
  • Fei Wang,
  • Hanbing Chen,
  • Meng Wang,
  • Peiqing Liu,
  • Songtao Liu,
  • Yibin Zhou,
  • Qi Ma

DOI
https://doi.org/10.1186/s12894-022-01013-8
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Background To evaluate the diagnostic performance of multiparametric transrectal ultrasound (TRUS) and to design diagnostic scoring systems based on four modes of TRUS to predict peripheral zone prostate cancer (PCa) and clinically significant prostate cancer (csPCa). Methods A development cohort involved 124 nodules from 116 patients, and a validation cohort involved 72 nodules from 67 patients. Predictors for PCa and csPCa were extracted to construct PCa and csPCa models based on regression analysis of the development cohort. An external validation was performed to assess the performance of models using area under the curve (AUC). Then, PCa and csPCa diagnostic scoring systems were established to predict PCa and csPCa. The diagnostic accuracy was compared between PCa and csPCa scores and PI-RADS V2, using receiver operating characteristics (ROC) and decision curve analysis (DCA). Results Regression models were established as follows: PCa = − 8.284 + 4.674 × Margin + 1.707 × Adler grade + 3.072 × Enhancement patterns + 2.544 × SR; csPCa = − 7.201 + 2.680 × Margin + 2.583 × Enhancement patterns + 2.194 × SR. The PCa score ranged from 0 to 6 points, and the csPCa score ranged from 0 to 3 points. A PCa score of 5 or higher and a csPCa score of 3 had the greatest diagnostic performance. In the validation cohort, the AUC for the PCa score and PI-RADS V2 in diagnosing PCa were 0.879 (95% confidence interval [CI] 0.790–0.967) and 0.873 (95%CI 0.778–0.969). For the diagnosis of csPCa, the AUC for the csPCa score and PI-RADS V2 were 0.806 (95%CI 0.700–0.912) and 0.829 (95%CI 0.727–0.931). Conclusions The multiparametric TRUS diagnostic scoring systems permitted better identifications of peripheral zone PCa and csPCa, and their performances were comparable to that of PI-RADS V2.

Keywords