Scientific Reports (Oct 2024)

Nanostructures/TiN layer/Al2O3 layer/TiN substrate configuration-based high-performance refractory metasurface solar absorber

  • Pei Zeng,
  • Yuting Zhou,
  • Chonghao Zhang,
  • Jingtong Yao,
  • Meiyan Pan,
  • Yifei Fu,
  • Hao Chen,
  • Guanying Chen,
  • Qian Zhao,
  • Xun Guan,
  • Mengjie Zheng

DOI
https://doi.org/10.1038/s41598-024-76118-1
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Metasurface solar absorber serves as a kind of important component for green energy devices to convert solar electromagnetic waves into thermal energy. In this work, we design a new solar light absorber configuration that incorporates the titanium nitride substrate, aluminum oxide layer, titanium nitride layer, and the topmost refractory nanostructures. The metasurface absorber based on this configuration can achieve an average spectral absorption of over 91% and a total solar radiation absorption of 91.5% at ultra-wide wavelengths of 300–2500 nm. It is discovered that the excellent performance of the proposed metasurface absorber is attributed to the synergistic effects of surface plasmonic effect and Fabry–Pérot (FP) cavity resonance by comprehensive analysis of the simulated field distributions. Furthermore, the effect of geometrical parameter of the proposed configuration on absorber performance is studied, indicating the proposed configuration possesses a large fabrication tolerance. Moreover, the proposed configuration is not sensitive to the polarization direction and the angle of incident light. It is also found that the use of other refractory metal materials and other shapes as the topmost absorbent nanostructures also have good results with this configuration. This work can offer a universal platform for constructing and guiding the design of refractory metasurface solar absorbers.

Keywords