Remote Sensing (Aug 2022)

Detecting Spatial-Temporal Changes of Urban Environment Quality by Remote Sensing-Based Ecological Indices: A Case Study in Panzhihua City, Sichuan Province, China

  • Yunfeng Shan,
  • Xiaoai Dai,
  • Weile Li,
  • Zhichong Yang,
  • Youlin Wang,
  • Ge Qu,
  • Wenxin Liu,
  • Jiashun Ren,
  • Cheng Li,
  • Shuneng Liang,
  • Binyang Zeng

DOI
https://doi.org/10.3390/rs14174137
Journal volume & issue
Vol. 14, no. 17
p. 4137

Abstract

Read online

Panzhihua City is a typical agricultural-forestry-pastoral and ecologically sensitive city in China. It is also an important ecological defense in the upper Yangtze River. It has abundant mineral resources, including vanadium, titanium, and water supplies. However, ecological and environmental problems emerge due to the excessive development of mining, agriculture, animal husbandry, and other non-natural urban economies. Therefore, a scientific understanding of the spatio-temporal changes of the eco-environment of Panzhihua is critical for environmental protection, city planning, and construction. To objectively evaluate the eco-environmental status of Panzhihua, the remote sensing-based ecological index (RSEI) was first applied to Panzhihua, a typical resource-based city, and its ecological environmental quality (EEQ) was quantitatively assessed from 1990 to 2020. This study explored the effects of mining activities and policies on EEQ and used change detection to reveal the spatial-temporal changes of EEQ in Panzhihua City over the past three decades. In addition, this study also verified the suitability of RSEI for evaluating EEQ in resource-based city using spatial autocorrelation, revealed the spatial heterogeneity of EEQ in Panzhihua City using optimized hot spot analysis, and showed different ecological clustering by hot spot analysis at two scales of urban and mining areas. According to the results: (1) From 1990 to 2020, the general eco-environmental condition of Panzhihua is improving, but there are still regional differences. (2) The Moran’s I value ranges from 0.436 (1990) to 0.700 (2020), indicating that there is autocorrelation in the distribution of eco-environmental quality. (3) At the mine, the mean value of RSEI dropped by 20–40%, and the EEQ decreased significantly due to mining activities. (4) A series of ecological restoration policies can buffer the negative impact of mining activities on the ecosystem, resulting in a slight improvement in the quality of the ecological environment. This study evaluates the EEQ of resource-based city and its spatial-temporal changes using RSEI constructed by the Google Earth Engine (GEE) platform, which can provide theoretical support for ecological and environmental conditions monitoring, development planning, and environmental protection policy-making of a resource-based city.

Keywords