Water (Apr 2024)

Detecting Shoreline Changes on the Beaches of Hainan Island (China) for the Period 2013–2023 Using Multi-Source Data

  • Rui Yuan,
  • Ruiyang Xu,
  • Hezhenjia Zhang,
  • Yutao Hua,
  • Hongsheng Zhang,
  • Xiaojing Zhong,
  • Shenliang Chen

DOI
https://doi.org/10.3390/w16071034
Journal volume & issue
Vol. 16, no. 7
p. 1034

Abstract

Read online

This study presents an in-depth analysis of the dynamic beach landscapes of Hainan Island, which is located at the southernmost tip of China. Home to over a hundred natural and predominantly sandy beaches, Hainan Island confronts significant challenges posed by frequent marine natural disasters and human activities. Addressing the urgent need for long-term studies of beach dynamics, this research involved the use of CoastSat to extract and analyze shoreline data from 20 representative beaches and calculate the slopes of 119 sandy beaches around the island for the period from 2013 to 2023. The objective was to delineate the patterns of beach evolution that contribute to the prevention of sediment loss, the mitigation of coastal hazards, and the promotion of sustainable coastal zone management. By employing multi-source remote sensing imagery and the CoastSat tool, this investigation validated slope measurements across selected beaches, demonstrating consistency between the calculated and actual distances despite minor anomalies. The effective use of the finite element solution (FES) in the 2014 global tidal model for tidal corrections further aligned the coastlines with the mean shoreline, underscoring CoastSat’s utility in enabling precise coastal studies. The analysis revealed significant seasonal variations in shoreline positions, with approximately half of the monitored sites showing a seaward progression in summer and a retreat in winter, which were linked to variations in wave height. The southern beaches exhibited distinct seasonal variations, which contrasted with the general trend due to differing wave impacts. The western and southern shores showed erosion, while the northern and eastern shores displayed accretion. The calculated slopes across the island indicated that the southern beaches had steeper slopes, while the northern areas exhibited more pronounced slope variations due to wave and tidal impacts. These findings highlight the critical role of integrated coastal management and erosion control strategies in safeguarding Hainan Island’s beaches. By understanding the mechanisms driving seasonal and regional shoreline changes, effective measures can be developed to mitigate the impacts of erosion and enhance the resilience of coastal ecosystems amidst changing environmental conditions. This research provides a foundational basis for future efforts aimed at the sustainable development and utilization of coastal resources on Hainan Island.

Keywords