Mathematical and Computational Applications (Feb 2023)
A Multiplicative Calculus Approach to Solve Applied Nonlinear Models
Abstract
Problems such as population growth, continuous stirred tank reactor (CSTR), and ideal gas have been studied over the last four decades in the fields of medical science, engineering, and applied science, respectively. Some of the main motivations were to understand the pattern of such issues and how to obtain the solution to them. With the help of applied mathematics, these problems can be converted or modeled by nonlinear expressions with similar properties. Then, the required solution can be obtained by means of iterative techniques. In this manuscript, we propose a new iterative scheme for computing multiple roots (without prior knowledge of multiplicity m) based on multiplicative calculus rather than standard calculus. The structure of our scheme stands on the well-known Schröder method and also retains the same convergence order. Some numerical examples are tested to find the roots of nonlinear equations, and results are found to be competent compared with ordinary derivative methods. Finally, the new scheme is also analyzed by the basin of attractions that also supports the theoretical aspects.
Keywords