Journal of Big Data (Aug 2019)

Analysis and classification of heart diseases using heartbeat features and machine learning algorithms

  • Fajr Ibrahem Alarsan,
  • Mamoon Younes

DOI
https://doi.org/10.1186/s40537-019-0244-x
Journal volume & issue
Vol. 6, no. 1
pp. 1 – 15

Abstract

Read online

Abstract This study proposed an ECG (Electrocardiogram) classification approach using machine learning based on several ECG features. An electrocardiogram (ECG) is a signal that measures the electric activity of the heart. The proposed approach is implemented using ML-libs and Scala language on Apache Spark framework; MLlib is Apache Spark’s scalable machine learning library. The key challenge in ECG classification is to handle the irregularities in the ECG signals which is very important to detect the patient status. Therefore, we have proposed an efficient approach to classify ECG signals with high accuracy Each heartbeat is a combination of action impulse waveforms produced by different specialized cardiac heart tissues. Heartbeats classification faces some difficulties because these waveforms differ from person to another, they are described by some features. These features are the inputs of machine learning algorithm. In general, using Spark–Scala tools simplifies the usage of many algorithms such as machine-learning (ML) algorithms. On other hand, Spark–Scala is preferred to be used more than other tools when size of processing data is too large. In our case, we have used a dataset with 205,146 records to evaluate the performance of our approach. Machine learning libraries in Spark–Scala provide easy ways to implement many classification algorithms (Decision Tree, Random Forests, Gradient-Boosted Trees (GDB), etc.). The proposed method is evaluated and validated on baseline MIT-BIH Arrhythmia and MIT-BIH Supraventricular Arrhythmia database. The results show that our approach achieved an overall accuracy of 96.75% using GDB Tree algorithm and 97.98% using random Forest for binary classification. For multi class classification, it achieved to 98.03% accuracy using Random Forest, Gradient Boosting tree supports only binary classification.

Keywords