Future Journal of Pharmaceutical Sciences (Jul 2020)

Zotepine loaded lipid nanoparticles for oral delivery: development, characterization, and in vivo pharmacokinetic studies

  • B. Nagaraj,
  • C. Tirumalesh,
  • S. Dinesh,
  • D. Narendar

DOI
https://doi.org/10.1186/s43094-020-00051-z
Journal volume & issue
Vol. 6, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background The purpose of this work was to prepare and evaluate the zotepine (ZT) loaded solid lipid nanoparticles (SLNs) that might improve the oral bioavailability. ZT is an anti-psychotic drug used for the treatment of schizophrenia. Currently, it is available as parenteral and oral dosage form. But, ZT has a poor oral bioavailability of about 7–13% due to limited aqueous solubility and first-pass effect. ZT-SLNs were developed using homogenization method and characterized for optimal system based on physicochemical characteristics and in vitro release. The optimized ZT-SLNs were evaluated for permeation through rat intestine using evert sac method. The crystalline nature of the ZT-SLNs was studied using DSC and XRD analysis. Surface morphology studies were conducted using SEM. Physical stability of the optimized ZT-SLN was evaluated at refrigerator and room temperature over 2 months. Further, pharmacokinetic (PK) studies of ZT-SLN were conducted in male Wistar rats, in comparison with ZT coarse suspension (ZT-CS), in vivo. Results Among all the developed ZT-SLN formulations, optimized formulation (F1) showed Z-avg, PDI, and ZP of 104.3 ± 1.6 nm, 0.17 ± 0.01, and − 30.5 ± 2.5 mV, respectively. In vitro release and permeation studies exhibited 82.9 ± 1.6% of drug release and 19.6 ± 2.1% of percentage drug permeation over 48 h and 120 min, respectively. DSC and XRD studies revealed the conversion of ZT to amorphous form. SEM studies showed spherical shape with improved PDI of ZT-SLN formulation. PK studies showed a significant (p < 0.05) improvement in AUC of about 1.3-fold, in comparison with ZT-CS in Wistar rats. Conclusion Therefore, the results concluded that SLNs could be considered as a new alternative delivery system for the enhancement of oral bioavailability of ZT.

Keywords