Energies (Jan 2022)

Effects of Plateau Environment on Combustion and Emission Characteristics of a Plateau High-Pressure Common-Rail Diesel Engine with Different Blending Ratios of Biodiesel

  • Guohai Jia,
  • Guoshuai Tian,
  • Daming Zhang

DOI
https://doi.org/10.3390/en15020550
Journal volume & issue
Vol. 15, no. 2
p. 550

Abstract

Read online

Taking a plateau high-pressure common-rail diesel engine as the research model, a model was established and simulated by AVL FIRE according to the structural parameters of a diesel engine. The combustion and emission characteristics of D, B20, and B50 diesel engines were simulated in the plateau atmospheric environment at 0 m, 1000 m, and 2000 m. The calculation results show that as the altitude increased, the peak in-cylinder pressure and the cumulative heat release of diesel decreased with different blending ratios. When the altitude increased by 1000 m, the cumulative heat release was reduced by about 5%. Furthermore, the emission trend of NO, soot, and CO was to first increase and then decrease. As the altitude increased, the mass fraction of NO emission decreased. As the altitude increased, the mass fractions of soot and CO increased. Additionally, when the altitude was 0 m and 1000 m, the maximum temperature, the mass fraction of OH, and the fuel–air ratio of B20 were higher and more uniform. When the altitude was 2000 m, the maximum temperature, the mass fraction of OH, and the fuel–air ratio of B50 were higher and more uniform. Lastly, as the altitude increased, the maximum combustion temperature of D and B20 decreased, and combustion became more uneven. As the altitude increased, the maximum combustion temperature of B50 increased, and the combustion became more uniform. As the altitude increased, the fuel–air ratio and the mass fractions of OH and NO decreased. When the altitude increased, the soot concentration increased, and the distribution area was larger.

Keywords