International Transactions on Electrical Energy Systems (Jan 2022)
An Effective Node-To-Edge Interdependent Network and Vulnerability Analysis for Digital Coupled Power Grids
Abstract
With the deep coupling between the cyber side and the physical side of power systems, the failure of any link of both sides may lead to power outages, so it is necessary to analyze their vulnerability and vulnerable links for targeted improvement of systems. By dynamically attacking the coupled network nodes, this paper proposes a multilevel model and node-to-edge cyber-physical power system and the corresponding indexes system to analyze the vulnerability of the coupled power grid and its key components. The results showed that in the order of the indexes proposed in this paper, attacking surviving power nodes and cyber nodes results in a network crash rate of 25.0% and 66.7% faster than that in the order of “betweenness” and that attacking surviving cyber nodes results in a network crash rate of 89.4% faster than that in the order of “degree.” In terms of attacking power nodes, the index proposed in this paper has the same rate as “degree.” Therefore, the proposed model can better describe the vulnerability of the power grid to withstand attacks.