Applied Sciences (Dec 2021)
Photothermal and Reorientational Contributions to the Photomechanical Response of DR1 Azo Dye-Doped PMMA Fibers
Abstract
This work is a comprehensive experimental and theoretical study aimed at understanding the photothermal and molecular shape-change contributions to the photomechanical effect of polymers doped with azo dyes. Our prototypical system is the azobenzene dye Disperse Red 1 (DR1) doped into poly (methyl methacrylate) (PMMA) polymer formed into optical fibers. We start by determining the thermo-mechanical properties of the materials with a temperature-dependent stress measurement. The material parameters, so determined, are used in a photothermal heating model—with no adjustable parameters—to predict its contribution. The photothermal heating model predicts the observations, ruling out mechanisms originating in light-induced shape changes of the dopant molecules. The photomechanical tensor response along the two principle axes in the uniaxial approximation is measured and compared with another independent theory of photothermal heating and angular hole burning/reorientation. Again, the results are consistent only with a purely thermal response, showing that effects due to light-induced shape changes of the azo dyes are negligible. The measurements are repeated as a function of polymer chain length and the photomechanical efficiencies determined. We find the results to be mostly chain-length independent.
Keywords