PLoS ONE (Jan 2021)
Optimizing nitrogen fertilizer amount for best performance and highest economic return of winter wheat under limited irrigation conditions.
Abstract
Inappropriate water and fertilizer management can lead to unstable crop yields. Excessive fertilization can potentially cause soil degradation and nitrogen (N) leaching. The aim of this study was to explore the optimal N application rate on two wheat varieties with different nitrogen responding under limited water irrigation at three experimental sites in the Piedmont plain of the Taihang Mountains, China. A two-year field experiment was conducted to explore the effects of five N application rates (N0, N120, N180, N240, and N300) on winter wheat growth, leaf area index, aboveground biomass, grain yield, grain N accumulation, and net return. The results showed that N application rate significantly affected leaf area index, aboveground biomass, grain yield, and harvest index. Variety and variety × N rate interactions had a significant effect on few indicators. Compared with N0, N180 improved leaf area index, aboveground biomass, grain yield, and grain N accumulation. Compared with N240 and N300, N180 increased the harvest index and N harvest index, without significantly reducing grain yield or grain N accumulation, while enhancing a higher N use efficiency. Fertilizers applied in the ranges of 144.7-212.9 and 150.3-247.0 kg ha-1 resulted in the highest net return for the KN199 and JM585 varieties, respectively. Our study provides a sound theoretical basis for high-efficiency fertilizer utilization in sustainable winter wheat production in the Piedmont plains of the Taihang Mountains of China.