Ain Shams Engineering Journal (Dec 2018)
Design of conservative, reversible sequential logic for cost efficient emerging nano circuits with enhanced testability
Abstract
The CMOS faces challenges related to the increment in leakage-current to power-consumption. QCA is a promising alternative to overcome these challenges successfully. On the other hand, reversible logic plays a significant role in quantum-computing. Keeping this technique in mind, a conservative-reversible flip-flops and counter are explored here which will bring QCA and reversible computing together in a single-platform. In synthesizing, a reversible-conservative-quantum-cellular-automata (R-CQCA) is proposed. The proposed D, T, JK and dual-edge master-slave flip-flops advocate an improvement of 20%, 46.6%, 50%, and 36.66% respectively than its counterpart in quantum-cost. Further, the 100% fault-coverage by stuck-fault is framed in R-CQCA, which can be useful for a tester to maintain data-integrity. Also, the R-CQCA layout is implemented in QCA, which achieve some parameters such as cell-complexity of 177, leakage-energy-dissipation of 0.1055 eV, and size of 0.24 µm2. Moreover, R-CQCA is better than FRG, RM, PPRG and MX-cqca regarding QCA-primitives are reported here. Keywords: Reversible logic, Conservative reversible logic, Reversible flip-flop, Reversible counter, QCA, Quantum cost