Redox Biology (Aug 2017)

Time-dependent effect of rutin on skin fibroblasts membrane disruption following UV radiation

  • Agnieszka Gęgotek,
  • Katarzyna Bielawska,
  • Michał Biernacki,
  • Izabela Dobrzyńska,
  • Elżbieta Skrzydlewska

Journal volume & issue
Vol. 12
pp. 733 – 744

Abstract

Read online

Chronic exposure of the skin to solar UV radiation induces a number of biological alterations, including a redox imbalance; therefore, there is an urgent need for skin cells protective compounds. The aim of this study was to determine the effects of natural, previously extensively examined, polyphenol with antioxidant properties – rutin, on UV-induced skin fibroblasts membrane disruption. Accordingly, fibroblasts exposed to UVA and UVB irradiation were incubated with rutin (12 h before and/or up to 24 h after irradiation), and the structural and metabolic changes were examined. Rutin penetration through the fibroblast phospholipid bilayer was aided by UVA-induced bilitranslocase activity 2–4 h after irradiation, while UVB irradiation led to enhanced phospholipid peroxidation and higher membrane permeability to facilitate the interaction of rutin with phospholipids. Lipidomic analysis revealed that 4 h of rutin treatment also partially prevented UVA/B-induced increase in phosphatidylethanolamine and phosphatidylcholine level, as well as their membrane localization, which resulted in an enhanced zeta potential in the cells and liposomes. Moreover, rutin 2 h following irradiation, in a various degree, prevented the increased in phospholipase A2 activity and ROS generation, and partially protected against the reduction of arachidonic and linoleic acids level and the lipid peroxidation product 4-hydroxynonenal level increase. Rutin effectively prevented against decrease in glutathione peroxidase, glutathione and vitamins E and C activities/levels, particularly 2 h following UVA irradiation.In conclusion, highest skin fibroblasts membrane level of rutin occurred in 2–4 h following UVA/B-radiation results in its strongest effect on biomembrane structure and functions and cellular antioxidant system irrespective of the radiation type. Keywords: Rutin, Fibroblasts, UV radiation, Membrane phospholipids