Cancers (Jan 2023)

Shallow Whole-Genome Sequencing of Cell-Free DNA (cfDNA) Detects Epithelial Ovarian Cancer and Predicts Patient Prognosis

  • Seong Eun Bak,
  • Hanwool Kim,
  • Jung Yoon Ho,
  • Eun-Hae Cho,
  • Junnam Lee,
  • Sung Min Youn,
  • Seong-Woo Park,
  • Mi-Ryung Han,
  • Soo Young Hur,
  • Sung Jong Lee,
  • Youn Jin Choi

DOI
https://doi.org/10.3390/cancers15020530
Journal volume & issue
Vol. 15, no. 2
p. 530

Abstract

Read online

Despite the progress in diagnostics and therapeutics, epithelial ovarian cancer (EOC) remains a fatal disease. Using shallow whole-genome sequencing of plasma cell-free DNA (cfDNA), we investigated biomarkers that could detect EOC and predict survival. Plasma cfDNA from 40 EOC patients and 20 healthy subjects were analyzed by shallow whole-genome sequencing (WGS) to identify copy number variations (CNVs) and determine the Z-scores of genes. In addition, we also calculated the genome-wide scores (Gi scores) to quantify chromosomal instability. We found that the Gi scores could distinguish EOC patients from healthy subjects and identify various EOC histological subtypes (e.g., high-grade serous carcinoma). In addition, we characterized EOC CNVs and demonstrated a relationship between RAB25 amplification (alone or with CA125), and disease-free survival and overall survival. This study identified RAB25 amplification as a predictor of EOC patient survival. Moreover, we showed that Gi scores could detect EOC. These data demonstrated that cfDNA, detected by shallow WGS, represented a potential tool for diagnosing EOC and predicting its prognosis.

Keywords