Journal of Dairy Science (Jan 2022)

Occurrence and greater intensity of estrus in recipient lactating dairy cows improve pregnancy per embryo transfer

  • A.M.L. Madureira,
  • T.A. Burnett,
  • J.C.S. Marques,
  • A.L. Moore,
  • S. Borchardt,
  • W. Heuwieser,
  • T.G. Guida,
  • J.L.M. Vasconcelos,
  • C.F. Baes,
  • R.L.A. Cerri

Journal volume & issue
Vol. 105, no. 1
pp. 877 – 888

Abstract

Read online

ABSTRACT: The aim of this study was to determine the association between occurrence and intensity of estrous expression with pregnancy success in recipient lactating dairy cows subjected to embryo transfer (ET). Two observational studies were conducted. Holstein cows were synchronized using the same timed ET protocol, based on estradiol and progesterone in both experiments. At 9 d after the end of the timed ET protocol only animals that had ovulated were implanted with a 7-d embryo [experiment 1 (Exp. 1); n = 1,401 ET events from 1,045 cows, and experiment 2 (Exp. 2); n = 1,147 ET events from 657 cows]. Embryos were produced in vivo (Exp. 1 and Exp. 2) and in vitro (only Exp. 2), then transferred to recipient cows as fresh or frozen-thawed. Pregnancy was confirmed at 29 and 58 d after the end of timed ET protocol. In Exp. 1, animals had their estrous expression monitored through a tail chalk applied on the tail head of the cows and evaluated daily for chalk removal (no estrus: 100% of chalk remaining; estrus: <50% of chalk remaining). In Exp. 2, cows were continuously monitored by a leg-mounted automated activity monitor. Estrous expression was quantified using the relative increase in physical activity at estrus in relation to the days before estrus. Estrous expression was classified as no estrus [<100% relative increase in activity (RI)], weak intensity (100–299% RI), and strong intensity (≥300% RI). Data were analyzed by analysis of variance using mixed linear regression models (GLIMMIX) in SAS (SAS Institute Inc.). A total of 65.2% (914/1,401) and 89.2% (1,019/1,142) of cows from Exp. 1 and Exp. 2, respectively, displayed estrus at the end of the ovulation synchronization protocol. In Exp. 1, cows expressing estrus before to ET had greater pregnancy per ET than those that did not [41.0 ± 2.3% (381/914) vs. 31.5 ± 2.9% (151/487), respectively]. Similarly, in Exp. 2, cows classified in the strong intensity group had greater pregnancy per ET compared with cows in the weak intensity and no estrus groups [41.3 ± 2.2% (213/571) vs. 32.7 ± 2.7% (115/353) vs. 11.3 ± 3.5% (26/218), respectively]. There was no effect of ET type on pregnancy per ET in Exp. 1. However, in Exp. 2, cows that received an in vivo-produced embryo, either fresh or frozen, had greater pregnancy per ET compared with cows that received in vitro-produced embryo. Cows receiving embryos in the early blastocyst and blastocyst stage had greater fertility compared with cows receiving embryos in the morula stage. There was an interaction between the occurrence of estrus and the stage of embryo development on pregnancy per ET, cows which displayed estrus and received a morula or early blastocyst had greater pregnancy per ET than cows that did not display estrus. In conclusion, the occurrence and the intensity of estrous expression improved pregnancy per ET in recipient lactating dairy cows and thus could be used as a tool to assist in the decision making of reproduction strategies in dairy farms.

Keywords