Atmospheric Measurement Techniques (Aug 2016)

A new technique for the direct detection of HO<sub>2</sub> radicals using bromide chemical ionization mass spectrometry (Br-CIMS): initial characterization

  • J. Sanchez,
  • D. J. Tanner,
  • D. Chen,
  • L. G. Huey,
  • N. L. Ng

DOI
https://doi.org/10.5194/amt-9-3851-2016
Journal volume & issue
Vol. 9, no. 8
pp. 3851 – 3861

Abstract

Read online

Hydroperoxy radicals (HO2) play an important part in tropospheric photochemistry, yet photochemical models do not capture ambient HO2 mixing ratios consistently. This is likely due to a combination of uncharacterized chemical pathways and measurement limitations. The indirect nature of current HO2 measurements introduces challenges in accurately measuring HO2; therefore a direct technique would help constrain HOx chemistry in the atmosphere. In this work we evaluate the feasibility of using chemical ionization mass spectrometry (CIMS) and propose a direct HO2 detection scheme using bromide as a reagent ion. Ambient observations were made with a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) in Atlanta over the month of June 2015 to demonstrate the capability of this direct measurement technique. Observations displayed expected diurnal profiles, reaching daytime median values of ∼ 5 ppt between 2 and 3 p.m. local time. The HO2 diurnal profile was found to be influenced by morning-time vehicular NOx emissions and shows a slow decrease into the evening, likely from non-photolytic production, among other factors. Measurement sensitivities of approximately 5.1 ± 1.0 cps ppt−1 for a bromide ion (79Br−) count rate of 106 cps were observed. The relatively low instrument background allowed for a 3σ lower detection limit of 0.7 ppt for a 1 min integration time. Mass spectra of ambient measurements showed the 79BrHO2− peak was the major component of the signal at nominal mass-to-charge 112, suggesting high selectivity for HO2 at this mass-to-charge. More importantly, this demonstrates that these measurements can be achieved using instruments with only unit mass resolution capability.