BMC Cardiovascular Disorders (Aug 2022)

Assessing the risk factors for myocardial infarction in diet-induced prediabetes: myocardial tissue changes

  • Nompumelelo Gumede,
  • Phikelelani Ngubane,
  • Andile Khathi

DOI
https://doi.org/10.1186/s12872-022-02758-8
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Hyperglycaemia is known to result in oxidative stress tissue injury and dysfunction. Interestingly, studies have reported hepatic and renal oxidative stress injury during prediabetes; however, any injury to the myocardium during prediabetes has not been investigated. Hence this study aims to assess changes in the myocardial tissue in an HFHC diet-induced model of prediabetes. Methods Male Sprague Dawley rats were randomly grouped into non-prediabetes and prediabetes (n = 6 in each group) and consumed a standard rat chow or fed a high-fat-high-carbohydrate diet respectively for a 20-week prediabetes induction period. Post induction, prediabetes was confirmed using the ADA criteria. Aldose reductase, NADH oxidase 1, superoxide dismutase, glutathione peroxide, cardiac troponins were analysed in cardiac tissue homogenate using specific ELISA kits. Lipid peroxidation was estimated by determining the concentration of malondialdehyde in the heart tissue homogenate according to the previously described protocol. Myocardial tissue sections were stained with H&E stain and analysed using Leica microsystem. All data were expressed as means ± SEM. Statistical comparisons were performed with Graph Pad instat Software using the Student's two-sided t-test. Pearson correlation coefficient was calculated to assess the association. Value of p < 0.05 was considered statistically significant. Results The prediabetes group showed a markedly high oxidative stress as indicated by significantly increased NADH oxidase 1 and malondialdehyde while superoxide dismutase and glutathione peroxide were decreased compared to non-prediabetes group. There was no statistical difference between cardiac troponin I and T in the non-prediabetes and prediabetes groups. Cardiac troponins had a weak positive association with glycated haemoglobin. Conclusion The findings of this study demonstrate that prediabetes is associated with myocardial injury through oxidative stress. Future studies are to investigate cardiac contractile function and include more cardiac biomarkers.

Keywords