Remote Sensing (Aug 2024)
Tightly Coupled Visual–Inertial Fusion for Attitude Estimation of Spacecraft
Abstract
The star sensor boasts the highest accuracy in spacecraft attitude measurement. However, it is vulnerable to disturbances, including high-dynamic motion, stray light, and various in-orbit environmental factors. These disruptions may lead to a significant decline in attitude accuracy or even abnormal output, potentially inducing a state of disorientation in the spacecraft. Thus, it is usually coupled with a high-frequency gyroscope to compensate for this limitation. Nevertheless, the accuracy of long-term attitude estimation using a gyroscope decreases due to the presence of bias. We propose an optimization-based tightly coupled scheme to enhance attitude estimation accuracy under dynamic conditions as well as to bolster the star sensor’s robustness in cases like lost-in-space. Our approach commenced with visual–inertial measurement preprocessing and estimator initialization. Subsequently, the enhancement of attitude and bias estimation precision was achieved by minimizing visual and inertial constraints. Additionally, a keyframe-based sliding window approach was employed to mitigate potential failures in visual sensor measurements. Numerical tests were performed to validate that, under identical dynamic conditions, the proposed method achieves a 50% improvement in the accuracy of yaw, pitch, and roll angles in comparison to the star sensor only.
Keywords