Journal of Oral Research (Aug 2022)
Prosthodontics, vertical dimension, anthropometry, face, dental occlusion, complete denture
Abstract
Objetive: To compare the stresses and deformations generated on the surrounding bone of the zygomatic implants when using an intra sinusal and extra-maxillary approach, through the finite element method. Material and Methods: Computer aided designs (CADs) were constructed using SolidWorks Software of a skull with bone resorption to be rehabilitated through a fixed hybrid prosthesis using two zygomatic and two conventional straight implants. For the boundary conditions (load conditions), symmetry in the sagittal plane was assumed and that all the materials were isotropic, homogeneous and linearly elastic. Two zygomatic implantation techniques were simulated: intra sinusal (Is) and extra maxillary (Em). Vertical and lateral loads of 150 N and 50 N were applied to the finite element models to obtain Von Mises equivalent stress and strain (displacement). Results: The average measurement of the Von Mises stress (MPa) recorded were as follows: Approach of the implant body (Is: 0.24- Em: 0.28,) effort of implant body with vertical load: Is: 0.69 - Em: 0.96; effort of peri-implant surface under horizontal load: Is: 2.11 - Em: 0.94. Average displacement under vertical load of peri-implant surface Is: 0.35 - Em: 0.40, and of implant body Is: 1.34 - Em: 2.04. Average total deformation in approach Is: 2.23 mm - Em: 0.80mm, and average total deformation in the implant body under horizontal load was Is: 0.14 - Em: 0.21. Conclusion: The results of this study indicate that despite the differences that occurred in both stress and strain (displacement) between the intra-sinus and extra-maxillary approaches, the static strength of the bone, which is approximately 150 MPa in tension and 250 MPa in compression was not exceeded. Considering the limitations of finite element analysis, there seems to be no biomechanical reason to choose one approach over the other.
Keywords