Applied Sciences (Mar 2020)
Unbalanced and Reactive Currents Compensation in Three-Phase Four-Wire Sinusoidal Power Systems
Abstract
In an unbalanced linear three-phase electrical system, there are inefficient powers that increase the apparent power supplied by the network, line losses, machine malfunctions, etc. These inefficiencies are mainly due to the use of unbalanced loads. Unlike a three-wire unbalanced system, a four-wire system has zero sequence currents that circulate through the neutral wire and can be compensated by means of compensation equipment, which prevents it from being delivered by the network. To design a compensator that works with unbalanced voltages, it is necessary to consider the interactions between it and the other compensators used to compensate for negative-sequence currents and positive-sequence reactive currents. In this paper, through passive compensation, a new method is proposed to develop the zero sequence current compensation equipment. The method does not require iteration algorithms and is valid for unbalanced voltages. In addition, the interactions between all compensators are analyzed, and the necessary modifications in the calculations are proposed to obtain a total compensation. To facilitate the application of the method and demonstrate its validity, a case study is developed from a three-phase linear four-wire system with unbalanced voltages and loads. The results obtained are compared with other compensation methods that also use passive elements.
Keywords