PLoS ONE (Jan 2015)

Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role.

  • Watcharee Ruairuen,
  • Gilberto J Fochesatto,
  • Elena B Sparrow,
  • William Schnabel,
  • Mingchu Zhang,
  • Yongwon Kim

DOI
https://doi.org/10.1371/journal.pone.0137209
Journal volume & issue
Vol. 10, no. 9
p. e0137209

Abstract

Read online

As the acreages of agricultural lands increase, changes in surface energetics and evapotranspiration (ET) rates may arise consequently affecting regional climate regimes. The objective of this study was to evaluate summertime ET dynamics and surface energy processes in a subarctic agricultural farm in Interior Alaska. The study includes micrometeorological and hydrological data. Results covering the period from June to September 2012 and 2013 indicated consistent energy fractions: LE/Rnet (67%), G/Rnet (6%), H/Rnet (27%) where LE is latent heat flux, Rnet is the surface net radiation, G is ground heat flux and H is the sensible heat flux. Additionally actual surface evapotranspiration from potential evaporation was found to be in the range of 59 to 66%. After comparing these rates with those of most prominent high latitude ecosystems it is argued here that if agroecosystem in high latitudes become an emerging feature in the land-use, the regional surface energy balance will significantly shift in comparison to existing Arctic natural ecosystems.