International Journal of Translational Medicine (Mar 2024)

The Co-Localization of NLRP3 and ASC Specks Does Not Automatically Entail NLRP3 Inflammasome Functionality in PDAC Cell Lines

  • Heléne Lindholm,
  • Matthew Herring,
  • Maria Faresjö,
  • Johan Haux,
  • Ferenc Szekeres,
  • Katarina Ejeskär

DOI
https://doi.org/10.3390/ijtm4020013
Journal volume & issue
Vol. 4, no. 2
pp. 224 – 237

Abstract

Read online

The NLRP3 inflammasome is an important mediator of the host inflammatory response, and downregulation of inflammation is important in cancer treatment. Here, we investigated four different pancreatic ductal adenocarcinoma (PDAC) cell lines, AsPC-1, BxPC-3, CFPAC-1 and Panc-1, with regards to NLRP3 inflammasome formation and cytokine secretion. ASC specks were observed in all the cell lines investigated, but AsPC-1 was the only cell-line with the co-localization of anti-ASC and anti-NLRP3 and spontaneously formed multiple NLRP3 inflammasomes per cell. The co-localization of NLRP3 and ASC was not accompanied by IL-1β release nor significant IL-18 release. BxPC-3 displayed relatively high expression of the inflammasome-related genes IL1B and CASP1 and had the highest levels of IL1β and IL18 secretion and the highest amount of ASC. The inflammasome-associated genes IL18 and PYCARD were up-regulated in the PDAC primary tumors compared to normal tissue, and high PDAC tumor expression of IL18, CASP1 and PYCARD correlated with low patient survival. We have shown that PDAC cell lines display significant variations in their inflammasome-related gene expression and readouts. We conclude that spontaneous ASC speck formation is possible in PDAC cells and that multiple NLRP3 inflammasomes are formed spontaneously in AsPC-1 cells but that the co-localization of NLRP3 and ASC specks does not automatically entail inflammasome function.

Keywords