Sports Medicine and Health Science (Dec 2024)

Physiological and perceptual responses to sprint interval exercise using arm versus leg cycling ergometry

  • Todd A. Astorino,
  • Shealin Pierce,
  • Madisen B. Piva,
  • Richard S. Metcalfe,
  • Niels B.J. Vollaard

Journal volume & issue
Vol. 6, no. 4
pp. 385 – 393

Abstract

Read online

Increases in power output and maximal oxygen consumption (V˙O2max) occur in response to sprint interval exercise (SIE), but common use of “all-out” intensities presents a barrier for many adults. Furthermore, lower-body SIE is not feasible for all adults. We compared physiological and perceptual responses to supramaximal, but “non-all-out” SIE between leg and arm cycling exercise. Twenty-four active adults (mean ​± ​SD age: [25 ​± ​7] y; cycling V˙O2max: [39 ​± ​7] mL·kg−1·min−1) performed incremental exercise using leg (LCE) and arm cycle ergometry (ACE) to determine V˙O2max and maximal work capacity (Wmax). Subsequently, they performed four 20 ​s bouts of SIE at 130% Wmax on the LCE or ACE at cadence ​= ​120–130 ​rev/min, with 2 ​min recovery between intervals. Gas exchange data, heart rate (HR), blood lactate concentration (BLa), rating of perceived exertion (RPE), and affective valence were acquired. Data showed significantly lower (p ​ ​0.42), and lowest affective valence recorded (2.0 ​± ​1.8) was considered “good to fairly good”. Data show that non “all-out” ACE elicits lower absolute but higher relative HR and V˙O2 compared to LCE. Less aversive perceptual responses could make this non-all-out modality feasible for inactive adults.

Keywords