Sensors (Nov 2024)

Multi-Task Water Quality Colorimetric Detection Method Based on Deep Learning

  • Shenlan Zhang,
  • Shaojie Wu,
  • Liqiang Chen,
  • Pengxin Guo,
  • Xincheng Jiang,
  • Hongcheng Pan,
  • Yuhong Li

DOI
https://doi.org/10.3390/s24227345
Journal volume & issue
Vol. 24, no. 22
p. 7345

Abstract

Read online

The colorimetric method, due to its rapid and low-cost characteristics, demonstrates a wide range of application prospects in on-site water quality testing. Current research on colorimetric detection using deep learning algorithms predominantly focuses on single-target classification. To address this limitation, we propose a multi-task water quality colorimetric detection method based on YOLOv8n, leveraging deep learning techniques to achieve a fully automated process of “image input and result output”. Initially, we constructed a dataset that encompasses colorimetric sensor data under varying lighting conditions to enhance model generalization. Subsequently, to effectively improve detection accuracy while reducing model parameters and computational load, we implemented several improvements to the deep learning algorithm, including the MGFF (Multi-Scale Grouped Feature Fusion) module, the LSKA-SPPF (Large Separable Kernel Attention-Spatial Pyramid Pooling-Fast) module, and the GNDCDH (Group Norm Detail Convolution Detection Head). Experimental results demonstrate that the optimized deep learning algorithm excels in precision (96.4%), recall (96.2%), and mAP50 (98.3), significantly outperforming other mainstream models. Furthermore, compared to YOLOv8n, the parameter count and computational load were reduced by 25.8% and 25.6%, respectively. Additionally, precision improved by 2.8%, recall increased by 3.5%, mAP50 enhanced by 2%, and mAP95 rose by 1.9%. These results affirm the substantial potential of our proposed method for rapid on-site water quality detection, offering new technological insights for future water quality monitoring.

Keywords