Fractal and Fractional (Jul 2025)
Hille–Yosida-Type Theorem for Fractional Differential Equations with Dzhrbashyan–Nersesyan Derivative
Abstract
It is a well-known fact that the Dzhrbashyan–Nersesyan fractional derivative includes as particular cases the fractional derivatives of Riemann–Liouville, Gerasimov–Caputo, and Hilfer. The notion of resolving a family of operators for a linear equation with the Dzhrbashyan–Nersesyan fractional derivative is introduced here. Hille–Yosida-type theorem on necessary and sufficient conditions of the existence of a strongly continuous resolving family of operators is proved using Phillips-type approximations. The conditions concern the location of the resolvent set and estimates for the resolvent of a linear closed operator A at the unknown function in the equation. The existence of a resolving family means the existence of a solution for the equation under consideration. For such equation with an operator A satisfying Hille–Yosida-type conditions the uniqueness of a solution is shown also. The obtained results are illustrated by an example for an equation of the considered form in a Banach space of sequences. It is shown that such a problem in a space of sequences is equivalent to some initial boundary value problems for partial differential equations. Thus, this paper obtains key results that make it possible to determine the properties of the initial value problem involving the Dzhrbashyan–Nersesyan derivative by examining the properties of the operator in the equation; the results prove the existence and uniqueness of the solution and the correctness of the problem.
Keywords