Advanced Powder Materials (Aug 2024)
Oxygen vacancy mediated bismuth-based photocatalysts
Abstract
Sunlight-driven photocatalysis, which can produce clean fuels and mitigate environmental pollution, has received extensive research attention due to its potential for addressing both energy shortages and environmental crises. Bismuth (Bi)-based photocatalysts with broad spectrum solar-light absorption and tunable structures, exhibit promising applications in solar-driven photocatalysis. Oxygen vacancy (OV) engineering is a widely recognized strategy that shows great potential for accelerating charge separation and small molecule activation. Based on OV engineering, this review focuses on Bi-based photocatalysts and provides a comprehensive overview including synthetic methods, regulation strategies, and applications in photocatalytic field. The synthetic methods of Bi-based photocatalysts with OVs (BPOVs) are classified into hydrothermal, solvothermal, ultraviolet light reduction, calcination, chemical etching, and mechanical methods based on different reaction types, which provide the possibility for the structural regulation of BPOVs, including dimensional regulation, vacancy creation, elemental doping, and heterojunction fabrication. Furthermore, this review also highlights the photocatalytic applications of BPOVs, including CO2 reduction, N2 fixation, H2 generation, O2 evolution, pollutant degradation, cancer therapy, and bacteria inactivation. Finally, the conclusion and prospects toward the future development of BPOVs photocatalysts are presented.