International Journal of Advanced Robotic Systems (Nov 2020)
A path-tracking algorithm using predictive Stanley lateral controller
Abstract
Path tracking is one of the most important aspects of autonomous vehicles. The current research focuses on designing path-tracking controllers taking into account the stability of the yaw and the nonholonomic constraints of the vehicle. In most cases, the lateral controller design relies on identifying a path reference point, the one with the shortest distance to the vehicle giving the current state of the vehicle. That restricts the controller’s ability to handle sudden changes of the trajectory heading angle. The present article proposes a new approach that imitates human behavior while driving. It is based on a discrete prediction model that anticipates the future states of the vehicle, allowing the use of the control algorithm in future predicted states augmented with the current controller output. The performance of the proposed approach is verified through several simulations on V-REP simulator with different types of maneuvers (double lane change, hook road, S road, and curved road) and a wide range of velocities. Predictive Stanley controller was used compared to the original Stanley controller. The obtained results of the proposed control approach show the advantage and the performance of the technique in terms of minimizing the lateral error and ensuring yaw stability by an average of 53% and 22%, respectively.