A “Skylight” Simulator for HWIL Simulation of Hyperspectral Remote Sensing
Huijie Zhao,
Bolun Cui,
Guorui Jia,
Xudong Li,
Chao Zhang,
Xinyang Zhang
Affiliations
Huijie Zhao
School of Instrumentation Science & Opto-electronics Engineering, Key Laboratory of Precision Opto-Mechatronics Technology, Beihang University, Ministry of Education, 37# Xueyuan Road, Haidian District, Beijing 100191, China
Bolun Cui
School of Instrumentation Science & Opto-electronics Engineering, Key Laboratory of Precision Opto-Mechatronics Technology, Beihang University, Ministry of Education, 37# Xueyuan Road, Haidian District, Beijing 100191, China
Guorui Jia
School of Instrumentation Science & Opto-electronics Engineering, Key Laboratory of Precision Opto-Mechatronics Technology, Beihang University, Ministry of Education, 37# Xueyuan Road, Haidian District, Beijing 100191, China
Xudong Li
School of Instrumentation Science & Opto-electronics Engineering, Key Laboratory of Precision Opto-Mechatronics Technology, Beihang University, Ministry of Education, 37# Xueyuan Road, Haidian District, Beijing 100191, China
Chao Zhang
School of Instrumentation Science & Opto-electronics Engineering, Key Laboratory of Precision Opto-Mechatronics Technology, Beihang University, Ministry of Education, 37# Xueyuan Road, Haidian District, Beijing 100191, China
Xinyang Zhang
School of Instrumentation Science & Opto-electronics Engineering, Key Laboratory of Precision Opto-Mechatronics Technology, Beihang University, Ministry of Education, 37# Xueyuan Road, Haidian District, Beijing 100191, China
Even though digital simulation technology has been widely used in the last two decades, hardware-in-the-loop (HWIL) simulation is still an indispensable method for spectral uncertainty research of ground targets. However, previous facilities mainly focus on the simulation of panchromatic imaging. Therefore, neither the spectral nor the spatial performance is enough for hyperspectral simulation. To improve the accuracy of illumination simulation, a new dome-like skylight simulator is designed and developed to fit the spatial distribution and spectral characteristics of a real skylight for the wavelength from 350 nm to 2500 nm. The simulator’s performance was tested using a spectroradiometer with different accessories. The spatial uniformity is greater than 0.91. The spectral mismatch decreases to 1/243 of the spectral mismatch of the Imagery Simulation Facility (ISF). The spatial distribution of radiance can be adjusted, and the accuracy of the adjustment is greater than 0.895. The ability of the skylight simulator is also demonstrated by comparing radiometric quantities measured in the skylight simulator with those in a real skylight in Beijing.