Animal (Jan 2010)
Systematic comparison of the empirical and factorial methods used to estimate the nutrient requirements of growing pigs
Abstract
Empirical and factorial methods are currently used to estimate nutrient requirements for domestic animals. The purpose of this study was to estimate the nutrient requirements of a given pig population using the empirical and factorial methods; to establish the relationship between the requirements estimated with these two methods; and to study the limitations of the methods when used to determine the level of a nutrient needed to optimize individual and population responses of growing pigs. A systematic analysis was carried out on optimal lysine-to-net-energy (Lys : NE) ratios estimated by the empirical and factorial methods using a modified InraPorc® growth model. Sixty-eight pigs were individually simulated based on detailed experimental data. In the empirical method, population responses were estimated by feeding pigs with 11 diets of different Lys : NE ratios. Average daily gain and feed conversion ratio were the chosen performance criteria. These variables were combined with economic information to estimate the economic responses. In the factorial method, the Lys : NE ratio for each animal was estimated by model inversion. Optimal Lys : NE ratios estimated for growing pigs (25 to 105 kg) differed between the empirical and the factorial method. When the average pig is taken to represent a population, the factorial method does not permit estimation of the Lys : NE ratio that maximizes the response of heterogeneous populations in a given time or weight interval. Although optimal population responses are obtained by the empirical method, the estimated requirements are fixed and cannot be used for other growth periods or populations. This study demonstrates that the two methods commonly used to estimate nutrient requirements provide different nutrient recommendations and have important limitations that should be considered when the goal is to optimize the response of individuals or pig populations.