Biochemistry and Biophysics Reports (Dec 2021)

CXCL12-stimulated lymphocytes produce secondary stimulants that affect the surrounding cell chemotaxis

  • Kaoru Kurowarabe,
  • Masataka Endo,
  • Daichi Kobayashi,
  • Haruko Hayasaka

Journal volume & issue
Vol. 28
p. 101128

Abstract

Read online

Chemotactic factors locally secreted from tissues regulate leukocyte migration via cell membrane receptors that induce intracellular signals. It has been suggested that neutrophils stimulated by bacterial peptides secrete a secondary stimulant that enhances the chemotactic cell migration of the surrounding cells. This paracrine mechanism contributes to chemokine-dependent neutrophil migration, however, it has not yet been extensively studied in lymphocytes. In this study, we provide evidence that lymphocytes stimulated by the chemokine, CXCL12, affect the CXCR4-independent chemotactic response of the surrounding cells. We found that CXCR4-expressing lymphocytes or the conditioned medium from CXCL12-stimulated cells promoted CXCR4-deficient cell chemotaxis. In contrast, the conditioned medium from CXCL12-stimulated cells suppressed CCR7 ligand-dependent directionality and the cell migration speed of CXCR4-deficient cells. These results suggest that paracrine factors from CXCL12-stimulated cells navigate surrounding cells to CXCL12 by controlling the responsiveness to CCR7 ligand chemokines and CXCL12.

Keywords