Frontiers in Earth Science (Feb 2024)
Elucidating the complex interplay between natural and anthropogenic factors in the deformation of the Muyubao landslide through time-series InSAR analysis
Abstract
In the Three Gorges Reservoir area, landslide disasters occur frequently, making scientific monitoring and risk prediction crucial for disaster prevention and mitigation. However, most previous studies have been constrained by analysis of singular influencing factors. In this study, we employed multi-temporal InSAR techniques coupled with multivariate geospatial statistical analysis to monitor and analyze the dynamic evolution of the Muyuba landslide in Zigui County, Hubei Province, China from 2016 to 2023. The findings indicate that the Muyuba landslide was predominantly characterized by continuous, gradual subsidence. Key factors inducing deformation included well-developed drainage networks, gentle slopes of 15–30°, and the orientation of rock strata. Deformation rates in residential areas and along roadways exceeded background levels, implicating anthropogenic activities in the heightened landslide risk. A significant correlation was observed between landslide deformation and reservoir water level fluctuations, as opposed to rainfall patterns, highlighting reservoir regulation disturbances as a critical landslide triggering factor.
Keywords