IEEE Access (Jan 2022)
Evaluation of Objective Distortion Measures for Automatic Quality Assessment of Processed PPG Signals for Real-Time Health Monitoring Devices
Abstract
Real-time photoplethysmogram (PPG) denoising and data compression has become most essential requirements for accurately measuring vital parameters and efficient data transmission but that may introduce different kinds of waveform distortions due to the lossy processing techniques. Subjective quality assessment tests are the most reliable way to assess the quality, but they are time expensive and also cannot be incorporated with quality-driven compression mechanism. Thus, finding a best objective distortion measure is highly demanded for automatically evaluating quality of reconstructed PPG signal that must be subjectively meaningful and simple. In this paper, we present four types of objective distortion measures and evaluate their performance in terms of quality prediction accuracy, Pearson correlation coefficient and computational time. The performance evaluation is performed on different kinds of PPG waveform distortions introduced by the predictive coding, compressed sampling, discrete cosine transform and discrete wavelet transform. On the normal and abnormal PPG signals taken from five standard databases, evaluation results showed that different subjective quality evaluation groups (5-point, 3-point and 2-point rating scale) had different best objective distortion measures in terms of prediction accuracy and Pearson correlation coefficient. Moreover, selection of a best objective distortion measure depends upon type of PPG features that need to be preserved in the reconstructed signal.
Keywords