Tribology Online (Dec 2019)

Novel Method for Direct Observation of Friction Interfaces between SUJ2 Ball and Si3N4 Thin Film Using Scanning Electron Microscopy

  • Hiroshi Kinoshita,
  • Naohiro Matsumoto

DOI
https://doi.org/10.2474/trol.14.382
Journal volume & issue
Vol. 14, no. 5
pp. 382 – 387

Abstract

Read online

In this study, a novel method was developed for in situ scanning electron microscopy (SEM) observations of friction interfaces, from a top view, using a Si3N4 thin film (SiN film), which has high electron transmission ability, and a microtribometer. Nanodiamond (ND) aggregates were adsorbed on the back surface of the SiN film. A JIS-SUS304 ball, on which surface ND aggregates were adsorbed and tribofilms were already formed, contacted and slid with the back surface of the SiN film. An SEM electron beam went through the SiN film, and generated secondary electrons from the ball surface contacting the back surface of the SiN film and the adsorbed ND aggregates. Thereafter, the generated secondary electrons from the ball surface penetrated again through the SiN film and reached the SEM electron detector. In other words, the contacting ball surface and the adsorbed ND aggregates were successfully imaged through the SiN film. Energy dispersive X-ray spectroscopy analyses of the friction interfaces were also accomplished. Moreover, in situ SEM observations of friction interfaces under boundary lubrication, using poly-alpha olefin (PAO) oil with graphene oxide aggregates and lithium grease with MoS2 particles, were successfully accomplished. The PAO oil and lithium grease had electron transmission ability, and the friction interfaces were imaged by SEM as seen with an optical microscope.

Keywords