Frontiers in Ecology and Evolution (Apr 2021)

Effects of Heterogeneous Environment After Deforestation on Plant Phenotypic Plasticity of Three Shrubs Based on Leaf Traits and Biomass Allocation

  • Jinniu Wang,
  • Jing Gao,
  • Yan Wu,
  • Bo Xu,
  • Fusun Shi,
  • Haiyan Zhou,
  • Neha Bisht,
  • Ning Wu

DOI
https://doi.org/10.3389/fevo.2021.608663
Journal volume & issue
Vol. 9

Abstract

Read online

Phenotypic plasticity among natural plant populations is a species-specific ecological phenomenon of paramount importance that depends on their life forms, development stages, as well as environmental factors. While this phenomenon is broadly understood, it has hardly been observed in nature. This study aimed at understanding phenotypic plasticity and ecological adaptability in three shrubs (Salix etosia, Rubus setchuenensis, and Hydrangea aspera) affected by potential environmental variables after deforesting in sparse Larix spp. forest and tall shrub mixed secondary forests. Soil organic carbon content, total nitrogen content, and available nitrogen content were greater outside the forests, contrary to other measured factors whose availability was higher in the forest interiors. In case of leaf traits and stoichiometric indicators, there were significant interactions of leaf area (LA), leaf dry matter (DW), specific leaf area (SLA), and leaf phosphorus content (LPC) between shrub species and heterogeneous environments (P < 0.05) but not for leaf C/N, N/P, and C/P. Principal components analysis (PCA) indicated that soil temperature, pH value, soil carbon content, soil nitrogen content, and MBC and MBN mainly constituted the first component. Summarized results indicated that TB and leaf C/P of S. etosia were significantly correlated with three principal components, but only marginal significant correlations existed between R/S and relevant components. SLA and R/S of R. setchuenensis had marginal significant relationships with independent variables. Both SLA and TB of H. aspera were significantly correlated with three principal components. Based on the pooled values of leaf functional traits and leaf stoichiometric indicators, R. setchuenensis (vining type) had better leaf traits plasticity to adapt to a heterogeneous environment. In descending order, the ranks of biomass allocation plasticity index of three shrubs were H. aspera (bunch type), R. setchuenensis (vining type), and S. etosia (erect type). The highest integrated plasticity values of leaf traits and biomass allocation was observed in H. aspera (bunch type), followed by R. setchuenensis, and by S. etosia with less adaptive plasticity in heterogeneous environments.

Keywords