Scientific Reports (May 2024)

Development and validation of early prediction models for new-onset functional impairment in patients after being transferred from the ICU

  • Zewei Xiao,
  • Limei Zeng,
  • Suiping Chen,
  • Jinhua Wu,
  • Haixing Huang

DOI
https://doi.org/10.1038/s41598-024-62447-8
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 11

Abstract

Read online

Abstract A significant number of intensive care unit (ICU) survivors experience new-onset functional impairments that impede their activities of daily living (ADL). Currently, no effective assessment tools are available to identify these high-risk patients. This study aims to develop an interpretable machine learning (ML) model for predicting the onset of functional impairment in critically ill patients. Data for this study were sourced from a comprehensive hospital in China, focusing on adult patients admitted to the ICU from August 2022 to August 2023 without prior functional impairments. A least absolute shrinkage and selection operator (LASSO) model was utilized to select predictors for inclusion in the model. Four models, logistic regression, support vector machine (SVM), random forest (RF), and extreme gradient boosting (XGBoost), were constructed and validated. Model performance was assessed using the area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Additionally, the DALEX package was employed to enhance the interpretability of the final models. The study ultimately included 1,380 patients, with 684 (49.6%) exhibiting new-onset functional impairment on the seventh day after leaving the ICU. Among the four models evaluated, the SVM model demonstrated the best performance, with an AUC of 0.909, accuracy of 0.838, sensitivity of 0.902, specificity of 0.772, PPV of 0.802, and NPV of 0.886. ML models are reliable tools for predicting new-onset functional impairments in critically ill patients. Notably, the SVM model emerged as the most effective, enabling early identification of patients at high risk and facilitating the implementation of timely interventions to improve ADL.

Keywords