Polymers (Apr 2024)

Improved Energy Storage Performance of Composite Films Based on Linear/Ferroelectric Polarization Characteristics

  • Chen Chen,
  • Lifang Shen,
  • Guang Liu,
  • Yang Cui,
  • Shubin Yan

DOI
https://doi.org/10.3390/polym16081058
Journal volume & issue
Vol. 16, no. 8
p. 1058

Abstract

Read online

The development and integration of high-performance electronic devices are critical in advancing energy storage with dielectric capacitors. Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) (PVTC), as an energy storage polymer, exhibits high-intensity polarization in low electric strength fields. However, a hysteresis effect can result in significant residual polarization, leading to a severe energy loss, which impacts the resultant energy storage density and charge/discharge efficiency. In order to modify the polarization properties of the polymer, a biaxially oriented polypropylene (BOPP) film with linear characteristics has been selected as an insulating layer and combined with the PVTC ferroelectric polarization layer to construct PVTC/BOPP bilayer films. The hetero-structure and polarization characteristics of the bilayer film have been systematically studied. Adjusting the BOPP volume content to 67% resulted in a discharge energy density of 10.1 J/cm3 and an energy storage efficiency of 80.9%. The results of this study have established the mechanism for a composite structure regulation of macroscopic energy storage performance. These findings can provide a basis for the effective application of ferroelectric polymer-based composites in dielectric energy storage.

Keywords