PLoS ONE (Jan 2023)
Osseointegrability of 3D-printed porous titanium alloy implant on tibial shaft bone defect in rabbit model.
Abstract
Previous studies have demonstrated the ability of osseointegration of porous titanium implants in cancellous bone. Our study was designed to (i) investigate the ability of bone ingrowth into 3D-printed porous titanium alloy implant on the cortical bone of rabbits using CT-scan and histology, and (ii) to identify the consistency of the radiology information between clinical Cone Beam Computed Tomography (CBCT) and Micro Computed Tomography (μCT) in the evaluation of bone ingrowth. The porous titanium alloy implants were 3D-printed employing the Electron Beam Melting (EBM) technology with an intended pore size of 600 μm and porosity of approximately 50 percent. Each implant was inserted into tibial diaphysis in one rabbit and its pores were classified as contacting bone or non-contacting bone. Depending on the time of explantation, the rabbits were divided into two groups: group 1 consisting of 6 rabbits between 13 and 20 weeks and group 2 consisting of 6 rabbits between 26 and 32 weeks. Tissue ingrowth into the non-bone contacting pores were evaluated by CBCT and histology. μCT was used to further investigate the bone ingrowth into four implants (two from each group were randomly chosen). The CBCT detected the present of tissue with bone-like density in both bone-contacting pores and non-bone-contacting pores of all implants. The μCT analysis also supported this result. All the bone-like tissues were then histologically confirmed to be mature bone. The analysis of CBCT data to assess bone ingrowth in porous implants had the sensitivity, specificity, positive and negative predictive values of 85, 84, 93 and 70 percent, respectively, when considering μCT assessment as the gold standard. Fully porous titanium alloy implant has great potential to reconstruct diaphyseal bone defect due to its good ability of osseointegration. CBCT is a promising method for evaluation of bone ingrowth into porous implants.