Water (Nov 2018)

Spatiotemporal Variations in Mercury Bioaccumulation at Fine and Broad Scales for Two Freshwater Sport Fishes

  • Shyam M. Thomas,
  • Stephanie J. Melles,
  • Satyendra P. Bhavsar

DOI
https://doi.org/10.3390/w10111625
Journal volume & issue
Vol. 10, no. 11
p. 1625

Abstract

Read online

Bioaccumulation of mercury in sport fish is a complex process that varies in space and time. Both large-scale climatic as well as fine-scale environmental factors are drivers of these space-time variations. In this study, we avail a long-running monitoring program from Ontario, Canada to better understand spatiotemporal variations in fish mercury bioaccumulation at two distinct scales. Focusing on two common large-bodied sport fishes (Walleye and Northern Pike), the data were analyzed at fine- and broad-scales, where fine-scale implies variations in bioaccumulation at waterbody- and year-level and broad-scale captures variations across 3 latitudinal zones (~5° each) and eight time periods (~5-year each). A series of linear mixed-effects models (LMEMs) were employed to capture the spatial, temporal and spatiotemporal variations in mercury bioaccumulation. Fine-scale models were overall better fit than broad-scale models suggesting environmental factors operating at the waterbody-level and annual climatic conditions matter most. Moreover, for both scales, the space time interaction explained most of the variation. The random slopes from the best-fitting broad-scale model were used to define a bioaccumulation index that captures trends within a climate change context. The broad-scale trends suggests of multiple and potentially conflicting climate-driven mechanisms. Interestingly, broad-scale temporal trends showed contrasting bioaccumulation patterns—increasing in Northern Pike and decreasing in Walleye, thus suggesting species-specific ecological differences also matter. Overall, by taking a scale-specific approach, the study highlights the overwhelming influence of fine-scale variations and their interactions on mercury bioaccumulation; while at broad-scale the mercury bioaccumulation trends are summarized within a climate change context.

Keywords