Modulation of Cell Behavior by 3D Biocompatible Hydrogel Microscaffolds with Precise Configuration
Wei-Cai Zhang,
Mei-Ling Zheng,
Jie Liu,
Feng Jin,
Xian-Zi Dong,
Min Guo,
Teng Li
Affiliations
Wei-Cai Zhang
Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China
Mei-Ling Zheng
Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China
Jie Liu
Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China
Feng Jin
Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China
Xian-Zi Dong
Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China
Min Guo
Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China
Teng Li
Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China
Three-dimensional (3D) micronano structures have attracted much attention in tissue engineering since they can better simulate the microenvironment in vivo. Two-photon polymerization (TPP) technique provides a powerful tool for printing arbitrary 3D structures with high precision. Here, the desired 3D biocompatible hydrogel microscaffolds (3D microscaffold) with structure design referring to fibroblasts L929 have been fabricated by TPP technology, particularly considering the relative size of cell seed (cell suspension), spread cell, strut and strut spacing of scaffold. Modulation of the cell behavior has been studied by adjusting the porosity from 69.7% to 89.3%. The cell culture experiment results reveal that the obvious modulation of F-actin can be achieved by using the 3D microscaffold. Moreover, cells on 3D microscaffolds exhibit more lamellipodia than those on 2D substrates, and thus resulting in a more complicated 3D shape of single cell and increased cell surface. 3D distribution can be also achieved by employing the designed 3D microscaffold, which would effectively improve the efficiency of information exchange and material transfer. The proposed protocol enables us to better understand the cell behavior in vivo, which would provide high prospects for the further application in tissue engineering.