Microbial Cell (Feb 2018)

Decreasing cytosolic translation is beneficial to yeast and human Tafazzin-deficient cells

  • Maxence de Taffin de Tilques,
  • Jean-Paul Lasserre,
  • François Godard,
  • Elodie Sardin,
  • Marine Bouhier,
  • Marina Le Guedard,
  • Roza Kucharczyk,
  • Patrice X. Petit,
  • Eric Testet,
  • Jean-Paul di Rago,
  • Déborah Tribouillard-Tanvier

DOI
https://doi.org/10.15698/mic2018.05.629
Journal volume & issue
Vol. 5, no. 5
pp. 220 – 232

Abstract

Read online

Cardiolipin (CL) optimizes diverse mitochondrial processes, including oxidative phosphorylation (OXPHOS). To function properly, CL needs to be unsaturated, which requires the acyltransferase Tafazzin (TAZ). Loss-of-function mutations in the TAZ gene are responsible for the Barth syndrome (BTHS), a rare X-linked cardiomyopathy, presumably because of a diminished OXPHOS capacity. Herein we show that a partial inhibition of cytosolic protein synthesis, either chemically with the use of cycloheximide or by specific genetic mutations, fully restores biogenesis and the activity of the oxidative phosphorylation system in a yeast BTHS model (taz1Δ). Interestingly, the defaults in CL were not suppressed, indicating that they are not primarily responsible for the OXPHOS deficiency in taz1Δ yeast. Low concentrations of cycloheximide in the picomolar range were beneficial to TAZ-deficient HeLa cells, as evidenced by the recovery of a good proliferative capacity. These findings reveal that a diminished capacity of CL remodeling deficient cells to preserve protein homeostasis is likely an important factor contributing to the pathogenesis of BTHS. This in turn, identifies cytosolic translation as a potential therapeutic target for the treatment of this disease.

Keywords