Chaotic maps have simple structures but can display complex behavior. In this paper, we apply discrete memristance and a nonlinear term in order to design new memristive maps. A general model for constructing memristive maps has been presented, in which a memristor is connected in serial with a nonlinear term. By using this general model, different memristive maps have been built. Such memristive maps process special fixed points (infinite and without fixed point). A typical memristive map has been studied as an example via fixed points, bifurcation diagram, symmetry, and coexisting iterative plots.