Applied Sciences (Sep 2024)
Equivalent Fatigue Constitutive Model Based on Fatigue Damage Evolution of Concrete
Abstract
Concrete structures such as bridge decks and road pavements are subjected to repetitive loading and are susceptible to fatigue failure. A simplified stress–strain analysis method that can simulate concrete behavior with a sound physical basis, acceptable prediction precision, and reasonable computation cost is urgently needed to address the critical issue of high-cycle fatigue in structural engineering. An equivalent fatigue constitutive model at discrete loading cycles incorporated into the concrete damaged plasticity model (CDPM) in Abaqus is proposed based on fatigue damage evolution. A damage variable is constructed from maximum fatigue strains, and fatigue damage evolution is described by a general equation whose parameters’ physical meaning and value range are identified. With the descending branch of the monotonic stress–strain curve as the envelope of fatigue residual strength and fatigue damage evolution equation as shape function, fatigue residual strength, residual stiffness, and residual strain are calculated. The equivalent fatigue constitutive model is validated through comparison with experimental data, where satisfactory simulation results were obtained for axial compression and flexural tension fatigue. The model’s novelty lies in integrating the fatigue damage evolution equation with CDPM, explicitly explaining performance degradation caused by fatigue damage. The proposed model could accommodate various forms of concrete constitution and fatigue stress states and has a broad application prospect for fatigue analysis of concrete structures.
Keywords