Remote Sensing (Aug 2020)

The Traveling Wave Loop Antenna: A Terminated Wire Loop Aerial for Directional High-Frequency Ocean RADAR Transmission

  • Stuart John de Vos,
  • Simone Cosoli,
  • Jacob Munroe

DOI
https://doi.org/10.3390/rs12172800
Journal volume & issue
Vol. 12, no. 17
p. 2800

Abstract

Read online

In this paper we document the design, development, results, performance and field applications of a compact directive transmit antenna for the long-range High Frequency ocean RADAR (HFR) systems operating in the International Telecommunication Union (ITU) designated 4MHz and 5MHz radiodetermination bands. The antenna design is based on the combination of the concepts of an electrically small loop with that of travelling wave antenna. This has the effect of inducing a radiated wave predominantly in a direction opposed to that of energy flow on the antenna structures. We demonstrate here that travelling wave design allows for a more compact antenna than other directive options, it has straightforward feed-point matching arrangements, and a flat frequency and phase response over an entire radiodetermination band. In situ measurements of the antenna radiation pattern, obtained with the aid of a drone, correlate well with those obtained from simulations, and show between 8dB and 30dB front-to-back suppression, with a 3dB beam width in the forward lobe of 100∘ or more. The broad-beam radiation pattern ensures proper illumination over the ocean and the significant front-to-back suppression guarantees reduced interference to terrestrial services. The proposed antenna design is compact and straight forward and can be easily deployed by minimal modifications of an existing transmission antenna. The design may be readily adapted to different environments due to the relative insensitivity of its radiation pattern and frequency response to geometric detail. The only downside to these antennas is their relatively low radiation efficiency which, however, may easily be compensated for by the available power output of a typical HFR transmitter. Antennas based on this design are currently deployed at the SeaSonde HFR sites in New South Wales, Australia, with operational ranges up to 200 km offshore despite their low radiating efficiency and the extremely low output power in use at these installations. Due to their directional pattern, it is also planned to test these antennas in phased-array Wellen RADAR (WERA) systems in both the standard receive arrays: where in-band radio frequency noise of terrestrial origin is impacting on data quality, and in the transmit array: to possibly simplify splitting, phasing and tuning requirements.

Keywords