Cellular and Molecular Gastroenterology and Hepatology (Jan 2017)
Targeted Inhibition of Pancreatic Acinar Cell Calcineurin Is a Novel Strategy to Prevent Post-ERCP PancreatitisSummary
Abstract
Background & Aims: There is a pressing need to develop effective preventative therapies for postâendoscopic retrograde cholangiopancreatography pancreatitis (PEP). We showed that early PEP events are induced through the calcium-activated phosphatase calcineurin and that global calcineurin deletion abolishes PEP in mice. A crucial question is whether acinar cell calcineurin controls the initiation of PEP in vivo. Methods: We used a mouse model of PEP and examined the effects of in vivo acinar cell-specific calcineurin deletion by either generating a conditional knockout line or infusing a novel adeno-associated virusâpancreatic elastase improved Cre (IâiCre) into the pancreatic duct of a calcineurin floxed line. Results: We found that PEP is dependent on acinar cell calcineurin in vivo, and this led us to determine that calcineurin inhibitors, infused within the radiocontrast, largely can prevent PEP. Conclusions: These results provide the impetus for launching clinical trials to test the efficacy of intraductal calcineurin inhibitors to prevent PEP. Keywords: Adeno-Associated Virus, Calcineurin B1, FK506, Cyclosporine A, Intraductal Delivery