Boundary Value Problems (Feb 2024)
Infinite system of nonlinear tempered fractional order BVPs in tempered sequence spaces
Abstract
Abstract This paper deals with the existence results of the infinite system of tempered fractional BVPs D r ϱ , λ 0 R z j ( r ) + ψ j ( r , z ( r ) ) = 0 , 0 < r < 1 , z j ( 0 ) = 0 , 0 R D r m , λ z j ( 0 ) = 0 , b 1 z j ( 1 ) + b 2 0 R D r m , λ z j ( 1 ) = 0 , $$\begin{aligned}& {}^{\mathtt{R}}_{0}\mathrm{D}_{\mathrm{r}}^{\varrho , \uplambda} \mathtt{z}_{\mathtt{j}}(\mathrm{r})+\psi _{\mathtt{j}}\bigl(\mathrm{r}, \mathtt{z}(\mathrm{r})\bigr)=0,\quad 0< \mathrm{r}< 1, \\& \mathtt{z}_{\mathtt{j}}(0)=0,\qquad {}^{\mathtt{R}}_{0} \mathrm{D}_{ \mathrm{r}}^{\mathtt{m}, \uplambda} \mathtt{z}_{\mathtt{j}}(0)=0, \\& \mathtt{b}_{1} \mathtt{z}_{\mathtt{j}}(1)+\mathtt{b}_{2} {}^{ \mathtt{R}}_{0}\mathrm{D}_{\mathrm{r}}^{\mathtt{m}, \uplambda} \mathtt{z}_{\mathtt{j}}(1)=0, \end{aligned}$$ where j ∈ N $\mathtt{j}\in \mathbb{N}$ , 2 < ϱ ≤ 3 $2<\varrho \le 3$ , 1 < m ≤ 2 $1<\mathtt{m}\le 2$ , by utilizing the Hausdorff measure of noncompactness and Meir–Keeler fixed point theorem in a tempered sequence space.
Keywords