Nature Communications (Jan 2021)

Integrating deep learning CT-scan model, biological and clinical variables to predict severity of COVID-19 patients

  • Nathalie Lassau,
  • Samy Ammari,
  • Emilie Chouzenoux,
  • Hugo Gortais,
  • Paul Herent,
  • Matthieu Devilder,
  • Samer Soliman,
  • Olivier Meyrignac,
  • Marie-Pauline Talabard,
  • Jean-Philippe Lamarque,
  • Remy Dubois,
  • Nicolas Loiseau,
  • Paul Trichelair,
  • Etienne Bendjebbar,
  • Gabriel Garcia,
  • Corinne Balleyguier,
  • Mansouria Merad,
  • Annabelle Stoclin,
  • Simon Jegou,
  • Franck Griscelli,
  • Nicolas Tetelboum,
  • Yingping Li,
  • Sagar Verma,
  • Matthieu Terris,
  • Tasnim Dardouri,
  • Kavya Gupta,
  • Ana Neacsu,
  • Frank Chemouni,
  • Meriem Sefta,
  • Paul Jehanno,
  • Imad Bousaid,
  • Yannick Boursin,
  • Emmanuel Planchet,
  • Mikael Azoulay,
  • Jocelyn Dachary,
  • Fabien Brulport,
  • Adrian Gonzalez,
  • Olivier Dehaene,
  • Jean-Baptiste Schiratti,
  • Kathryn Schutte,
  • Jean-Christophe Pesquet,
  • Hugues Talbot,
  • Elodie Pronier,
  • Gilles Wainrib,
  • Thomas Clozel,
  • Fabrice Barlesi,
  • Marie-France Bellin,
  • Michael G. B. Blum

DOI
https://doi.org/10.1038/s41467-020-20657-4
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 11

Abstract

Read online

The SARS-COV-2 pandemic has put pressure on intensive care units, so that predicting severe deterioration early is a priority. Here, the authors develop a multimodal severity score including clinical and imaging features that has significantly improved prognostic performance in two validation datasets compared to previous scores.