Sensors (Feb 2023)

Performance-Enhanced Static Modulated Fourier Transform Spectrometer with a Spectral Reconstruction

  • Ju Yong Cho,
  • Seunghoon Lee,
  • Won Kweon Jang

DOI
https://doi.org/10.3390/s23052603
Journal volume & issue
Vol. 23, no. 5
p. 2603

Abstract

Read online

A static modulated Fourier transform spectrometer has been noted to be a compact and fast evaluation tool for spectroscopic inspection, and many novel structures have been reported to support its performance. However, it still suffers from poor spectral resolution due to the limited sampling data points, which marks its intrinsic drawback. In this paper, we outline the enhanced performance of a static modulated Fourier transform spectrometer with a spectral reconstruction method that can compensate for the insufficient data points. An enhanced spectrum can be reconstructed by applying a linear regression method to a measured interferogram. We obtain the transfer function of a spectrometer by analyzing what interferogram can be detected with different values of parameters such as focal length of the Fourier lens, mirror displacement, and wavenumber range, instead of direct measurement of the transfer function. Additionally, the optimal experimental conditions for the narrowest spectral width are investigated. Application of the spectral reconstruction method achieves an improved spectral resolution from 74 cm−1 when spectral reconstruction is not applied to 8.9 cm−1, and a narrowed spectral width from 414 cm−1 to 371 cm−1, which are close to the values of the spectral reference. In conclusion, the spectral reconstruction method in a compact static modulated Fourier transform spectrometer effectively enhances its performance without any additional optic in the structure.

Keywords