Genes (Jan 2022)

Combining Fine Mapping, Whole-Genome Re-Sequencing, and RNA-Seq Unravels Candidate Genes for a Soybean Mutant with Short Petioles and Weakened Pulvini

  • Keke Kong,
  • Mengge Xu,
  • Zhiyong Xu,
  • Ripa Akter Sharmin,
  • Mengchen Zhang,
  • Tuanjie Zhao

DOI
https://doi.org/10.3390/genes13020185
Journal volume & issue
Vol. 13, no. 2
p. 185

Abstract

Read online

A short petiole is an important agronomic trait for the development of plant ideotypes with high yields. However, the genetic basis underlying this trait remains unclear. Here, we identified and characterized a novel soybean mutant with short petioles and weakened pulvini, designated as short petioles and weakened pulvini (spwp). Compared with the wild type (WT), the spwp mutant displayed shortened petioles, owing to the longitudinally decreased cell length, and exhibited a smaller pulvinus structure due to a reduction in motor cell proliferation and expansion. Genetic analysis showed that the phenotype of the spwp mutant was controlled by two recessive nuclear genes, named as spwp1 and spwp2. Using a map-based cloning strategy, the spwp1 locus was mapped in a 183 kb genomic region on chromosome 14 between markers S1413 and S1418, containing 15 annotated genes, whereas the spwp2 locus was mapped in a 195 kb genomic region on chromosome 11 between markers S1373 and S1385, containing 18 annotated genes. Based on the whole-genome re-sequencing and RNA-seq data, we identified two homologous genes, Glyma.11g230300 and Glyma.11g230600, as the most promising candidate genes for the spwp2 locus. In addition, the RNA-seq analysis revealed that the expression levels of genes involved in the cytokinin and auxin signaling transduction networks were altered in the spwp mutant compared with the WT. Our findings provide new gene resources for insights into the genetic mechanisms of petiole development and pulvinus establishment, as well as soybean ideotype breeding.

Keywords